首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13414篇
  免费   1826篇
  国内免费   3770篇
  2024年   16篇
  2023年   450篇
  2022年   413篇
  2021年   573篇
  2020年   685篇
  2019年   736篇
  2018年   689篇
  2017年   706篇
  2016年   745篇
  2015年   684篇
  2014年   696篇
  2013年   1004篇
  2012年   682篇
  2011年   748篇
  2010年   582篇
  2009年   663篇
  2008年   690篇
  2007年   759篇
  2006年   733篇
  2005年   648篇
  2004年   488篇
  2003年   532篇
  2002年   465篇
  2001年   441篇
  2000年   363篇
  1999年   369篇
  1998年   314篇
  1997年   280篇
  1996年   303篇
  1995年   273篇
  1994年   247篇
  1993年   265篇
  1992年   229篇
  1991年   220篇
  1990年   194篇
  1989年   198篇
  1988年   176篇
  1987年   126篇
  1986年   103篇
  1985年   105篇
  1984年   105篇
  1983年   48篇
  1982年   66篇
  1981年   37篇
  1980年   34篇
  1979年   33篇
  1978年   26篇
  1977年   16篇
  1976年   15篇
  1958年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
After a 2 h exposure of intact soybean nodules to high concentrations of NaCl (100mol m?3) or oxygen (8OkPa O2), morphometric computations carried out using an image analysis technique on semi-thin sections showed that both treatments induced a decrease in the area of the inner-cortex cells, which were then characterized by a tangential elongation. In contrast, no significant change in area occurred in the middle-cortex cells although their elongation decreased. Electron microscopic observations showed that in the inner-cortex cells changes included the presence of wall infoldings, an enlarged periplasmic space and a lobate nucleus whose chromatin distribution differed from that of the control. Structural changes also occurred in the endoplasmic reticulum, microbodies, mitochondria and plastids. From several of these changes, which are similar to those noted in osmocontractil cells in response to external stimuli, it can be hypothesized that the inner cortex may provide a potential mechanism for the control of oxygen diffusion through the nodules.  相似文献   
2.
A. Kumar  S. Sharma  S. Mishra 《Plant biosystems》2016,150(5):1056-1064
This study was conducted to study the long-term impact of bioinoculants, Azotobacter chroococcum and arbuscular mycorrhizal fungi (AMF) on growth and biomass yield of Jatropha curcas grown in nursery and in field conditions. The experiment was set up in a randomized block design, and the following treatments was designed (T1 = control, T2 = Azotobacter, T3 = inoculation with AMF, and T4 = inoculation with Azotobacter + AMF). Data on various growth attributes (shoot height and shoot diameter) and biochemical parameters [leaf relative water content (LRWC), sugars, protein, and photosynthetic pigments] were recorded up to 6 months in the nursery and in the field (18 months). Results pertaining to morpho-physiological traits showed Azotobacter and AMF consortia increase shoot height, shoot diameter, LRWC, sugars, proteins, and photosynthetic pigments over control under nursery conditions. Besides enhancing the plant growth, these bioinoculants helped in better establishment of Jatropha plants under field conditions. A significant improvement in the shoot height, shoot diameter, fruit yield/plant, and seed yield (g)/plant was evident in 18-month-old Jatropha plants under field conditions when Azotobacter and AMF were co-inoculated. This work supports the application of bioinoculants for establishment of Jatropha curcas in semi-arid regions.  相似文献   
3.
4.
Abstract. Gas exchange, leaf-nitrogen concentration and water potential were measured in early and late spring in early successional herbaceous plants occurring after cutting and after fire, and in mature woody species from the Mediterranean climax community Quercetum ilicis in central Italy. Net photosynthesis peaked in early spring in all species studied when values for temperature and light were lower but leaf-nitrogen content was higher as compared to late spring, suggesting that nitrogen more than energy input controlled photosynt-hetic rates. Herbaceous pioneer species occurring after cutting showed higher field photo synthetic capacity than evergreen climax trees and shrubs. By contrast, net photosynthesis of herbaceous species occurring in a persistent stage after fire, was in the same range as that of climax trees. This evidence suggests that carbon-gaining appears to be partly related to the dynamic stage of succession and not solely to the growth form.  相似文献   
5.
Photosynthetic characteristics, specific leaf mass, chlorophyll and total leaf nitrogen concentrations of four herbaceous plants (Dicranopteris linearis, Hanguana malayana, Pentaphragma ellipticum, Tacca integrifolia) from nutrient-poor tropical forests showed that all these plants were well-adapted to their natural growth environments. No photoinhibition was observed even in the understorey plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
6.
  • Intraspecific trait variation (ITV; i.e. variability in mean and/or distribution of plant attribute values within species) can occur in response to multiple drivers. Environmental change and land‐use legacies could directly alter trait values within species but could also affect them indirectly through changes in vegetation cover. Increasing variability in environmental conditions could lead to more ITV, but responses might differ among species. Disentangling these drivers on ITV is necessary to accurately predict plant community responses to global change.
  • We planted herb communities into forest soils with and without a recent history of agriculture. Soils were collected across temperate European regions, while the 15 selected herb species had different colonizing abilities and affinities to forest habitat. These mesocosms (384) were exposed to two‐level full‐factorial treatments of warming, nitrogen addition and illumination. We measured plant height and specific leaf area (SLA).
  • For the majority of species, mean plant height increased as vegetation cover increased in response to light addition, warming and agricultural legacy. The coefficient of variation (CV) for height was larger in fast‐colonizing species. Mean SLA for vernal species increased with warming, while light addition generally decreased mean SLA for shade‐tolerant species. Interactions between treatments were not important predictors.
  • Environmental change treatments influenced ITV, either via increasing vegetation cover or by affecting trait values directly. Species’ ITV was individualistic, i.e. species responded to different single resource and condition manipulations that benefited their growth in the short term. These individual responses could be important for altered community organization after a prolonged period.
  相似文献   
7.
Beaked whales are medium‐sized toothed whales that inhabit depths beyond the continental shelf; thus beaked whale strandings are relatively infrequent compared to those of other cetaceans. Beaked whales have been catapulted into the spotlight by their tendency to strand in association with naval sonar deployment. Studies have shown the presence of gas and fat emboli within the tissues and analysis of gas emboli is suggestive of nitrogen as the primary component. These findings are consistent with human decompression sickness (DCS) previously not thought possible in cetaceans. Because, tissue loading with nitrogen gas is paramount for the manifestation of DCS and nitrogen loading depends largely on the vascular perfusion of the tissues, we examined the anatomy of the extracranial arterial system using stranded carcasses of 16 beaked whales from five different species. Anatomic regions containing lipid and/or air spaces were prioritized as potential locations of nitrogen gas absorption due to the known solubility of nitrogen in adipose tissue and the nitrogen content of air, respectively. Attention was focused on the acoustic fat bodies and accessory sinus system on the ventral head. We found much of the arterial system of the head to contain arteries homologous to those found in domestic mammals. Robust arterial associations with lipid depots and air spaces occurred within the acoustic fat bodies of the lower jaw and pterygoid air sacs of the ventral head, respectively. Both regions contained extensive trabecular geometry with small arteries investing the trabeculae. Our findings suggest the presence of considerable surface area between the arterial system, and the intramandibular fat bodies and pterygoid air sacs. Our observations may provide support for the hypothesis that these structures play an important role in the exchange of nitrogen gas during diving. J. Morphol. 277:5–33, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   
8.
The effect of NO2 fumigation on root N uptake and metabolism was investigated in 3-month-old spruce (Picea abics L. Karst) seedlings. In a first experiment, the contribution of NO2 to the plant N budget was measured during a 48 h fumigation with 100mm3m?3 NO2. Plants were pre-treated with various nutrient solutions containing NO2 and NH4+, NO3? only or no nitrogen source for 1 week prior to the beginning of fumigation. Absence of NH4+ in the solution for 6d led to an increased capacity for NO3? uptake, whereas the absence of both ions caused a decrease in the plant N concentration, with no change in NO3? uptake. In fumigated plants, NO2 uptake accounted for 20–40% of NO3? uptake. Root NO3? uptake in plants supplied with NH4+plus NO3? solutions was decreased by NO2 fumigation, whereas it was not significantly altered in the other treatments. In a second experiment, spruce seedlings were grown on a solution containing both NO2 and NH4+ and were fumigated or not with 100mm3m?3 NO2 for 7 weeks. Fumigated plants accumulated less dry matter, especially in the roots. Fluxes of the two N species were estimated from their accumulations in shoots and roots, xylem exudate analysis and 15N labelling. Root NH4+ uptake was approximately three times higher than NO3? uptake. Nitrogen dioxide uptake represented 10–15% of the total N budget of the plants. In control plants, N assimilation occurred mainly in the roots and organic nitrogen was the main form of N transported to the shoot. Phloem transport of organic nitrogen accounted for 17% of its xylem transport. In fumigated plants, neither NO3? nor NH4+ accumulated in the shoot, showing that all the absorbed NO2 was assimilated. Root NO3? reduction was reduced whereas organic nitrogen transport in the phloem increased by a factor of 3 in NO2-fimugated as compared with control plants. The significance of the results for the regulation of whole-plant N utilization is discussed.  相似文献   
9.
10.
Protected cultivation of ornamental flowers, as a commercial venture, becomes less profitable with excessive use of fertilizers. The present study examined the influence of microbial biofilm inoculants (AnabaenaAzotobacter, AnabaenaTrichoderma and TrichodermaAzotobacter) on the availability of soil nutrients and structure of rhizosphere microbial communities in three varieties of chrysanthemum (var. White Star, Thai Chen Queen and Zembla). Varietal-specific responses in growth, enzyme activities, flower yield of plants and availability of soil nutrients were recorded. Dehydrogenase activity was highest in var. White Star treated with the AnabaenaTrichoderma biofilm inoculants. The AnabaenaAzotobacter inoculant enhanced the availability of nitrogen, phosphorus and micronutrients in the soil, besides 40–50% increase in soil organic carbon, as compared to carrier alone or no inoculation. PCR-DGGE profiling of the cyanobacterial communities and qPCR quantification of 16S rRNA abundance of bacteria, archaea and cyanobacteria in the rhizosphere soils, revealed the stronger influences of these inoculants, especially in var. Zembla. Principal Component Analysis (PCA) helped to illustrate that the enhanced microbe-mediated availability of soil macro-and micronutrients, except iron content (Fe), was the most influential factor facilitating improved plant growth and yield parameters. The AnabaenaAzotobacter, and Anabaena–Trichoderma biofilm inoculants, proved superior in all three chrysanthemum varieties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号